

Acknowledgement—A. A. is grateful to the C.S.I.R., India for the award of a Junior Research Fellowship.

REFERENCES

- 1 El-Tawil, B. A. H. (1983) *Arab Gulf J. Sci. Res.* **1**, 395
- 2 Vander Sluis, W. G. and Labadie, R. P. (1985) *Phytochemistry* **24**, 2601
- 3 Kutney, J. P., Warnock, W. D. C. and Gilbert, B. (1970) *Phytochemistry* **9**, 1877.
- 4 Sherwood, R. T. and Sharma, M. (1973) *Phytochemistry* **12**, 2275
- 5 Horhammer, L. and Hansel, R. (1955) *Arch. Pharm. Berlin* **228**, 315
- 6 Hirst, E. L. and Jones, J. K. N. (1949) *Discs Faraday Soc.* **7**, 268
- 7 Komatsu, M., Tomimori, T. and Mikuriya, M. (1969) *Chem. Pharm. Bull.* **17**, 155
- 8 Ghosal, S., Chaudhuri, R. K. and Nath, A. (1971) *J. Indian Chem. Soc.* **48**, 589
- 9 Sen, K. and Bagchi, P. (1959) *J. Org. Chem.* **24**, 316
- 10 Haynes, L. J. and Holdsworth, D. K. (1970) *J. Chem. Soc. (C)*, 2581
- 11 Speranza, G., Gramatica, P., Dada, G. and Manutto, P. (1985) *Phytochemistry* **24**, 1571
- 12 Prox, A. (1968) *Tetrahedron* **24**, 3697
- 13 Gentili, B. and Horowitz, R. M. (1967) *J. Org. Chem.* **33**, 1571
- 14 Hillis, W. E. and Horn, D. H. S. (1965) *Aust. J. Chem.* **18**, 531
- 15 Holdsworth, D. K. (1973) *Phytochemistry* **12**, 2011
- 16 Bouillant, M. L., Bassett, A., Favre-Bonvin, J. and Chopin, J. (1978) *Phytochemistry* **17**, 527

Phytochemistry, Vol. 27, No. 11, pp. 3694-3696, 1988
Printed in Great Britain

0031 9422/88 \$3.00 + 0.00
Pergamon Press plc

TWO XANTHONES FROM *GARCINIA MANGOSTANA*

MEHTAB PARVEEN and NIZAM UD-DIN KHAN*

Department of Chemistry, Aligarh Muslim University, Aligarh 202 001, India

(Received in revised form 8 February 1988)

Key word Index—*Garcinia mangostana*, Guttiferae, 1,5,8-trihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone, 1,6-dihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone, gartanin; ¹H NMR, MS

Abstract—Two new xanthones, 1,5,8-trihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone and 1,6-dihydroxy-3-methoxy-2-[3-methyl-2-butenyl] xanthone were isolated alongwith the known xanthone gartanin from the leaves of *Garcinia mangostana* and their structures elucidated by ¹H NMR, IR and mass spectral studies

INTRODUCTION

Garcinia mangostana L. is known for its medicinal properties. Morellin and neomorellin isolated from *G. morella* have been used as antiprotozoal [1] and anti-bacterial principles [2, 3]. The present paper reports the isolation and characterization of two new xanthones **2** and **3** alongwith the known xanthone gartanin (**1**) from the leaves of *Garcinia mangostana* in addition to several other xanthones reported earlier by other workers [4-6].

RESULTS AND DISCUSSION

Silica gel column chromatography of the benzene extract of dried and powdered leaves of *G. mangostana* yielded two crystalline compounds (**1** and **2**). Compound **1** was found to be identical with gartanin (mp, IR, ¹H NMR and MS) reported earlier from fruit hull of *G. mangostana* [7]. Recrystallization of **2** yielded a yellow amorphous powder, C₁₉H₁₈O₆ (based on [M]⁺ at *m/z*

342) which in ethanolic solution gave a red colour with *p*-benzoquinone (gossypetone reaction) indicating the presence of a *p*-quinol moiety [8]. It showed UV absorption at λ_{max} 220, 250, 280 and 310 nm in methanol and in the IR spectrum (KBr) ν_{max} 3400 (phenolic OH), 1775 (>C=O), 1650 and 1600 (aromatic system) were noted. The ¹H NMR spectrum of **2** showed singlets at δ 1.62 and 1.72, each integrating for three protons for geminal methyl groups, a broad signal at δ 3.25 for methylene protons, a singlet at δ 3.92 for the three methoxy protons and a broad triplet integrating for one proton at δ 5.08 for an olefinic proton. A pair of *ortho* coupled doublets ($J=8.8$ Hz) at δ 6.58 and 7.24 were attributable to H-6 and H-7 of the xanthone nucleus [7]. A singlet at δ 6.64 integrating for one proton was assigned to H-4 by comparison with other xanthones [9] unsubstituted at position 4. Hydroxy protons showed broad signals at δ 10.91, 11.02 and 11.03. The mass spectrum showed a molecular ion at *m/z* 342 and base peak at *m/z* 287 [M]

—55] Other diagnostic fragment ions were observed at m/z 327 [M—15], 299 [M—43] and 271 [M—isoprene—2H or M—isopropyl—CO].

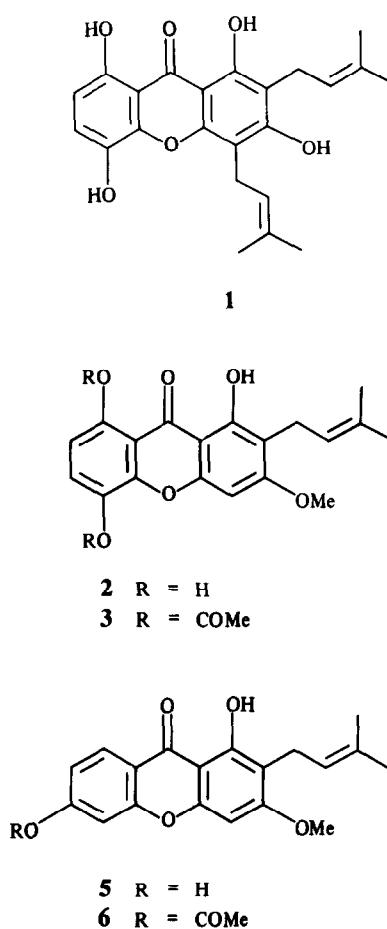
Compound **2**, on acetylation and repeated crystallization from chloroform—ethanol, afforded the acetate **3**, which gave a positive ferric chloride reaction indicating the presence of a phenolic group resistant to acetylation. It showed UV absorption maxima at 310 and 360 nm in chloroform. The ^1H NMR spectrum of **3** showed singlets at δ 1.69 and 1.75 for geminal methyl groups, singlets at δ 2.41 and 2.45 for acetoxy groups, a broad signal at δ 3.30 for methylene protons, a singlet at δ 3.93 for methoxy protons, a broad triplet integrating for one proton at δ 5.10 for olefinic proton and a singlet at δ 6.33 for H-4. The doublets ($J=8.8$ Hz) at δ 6.97 and 7.43 were assigned to H-6 and H-7, respectively. The downfield shift of signals for H-6 and H-7 in **3** compared with that in the parent xanthone (**2**) shows the presence of acetoxy groups at position 5 and 8 of the xanthone nucleus. The MS spectrum of **3** showed a molecular ion at m/z 426 and diagnostic fragment ions at m/z 384 (M—42), 341 (M—42—43), 326 (M—42—43—15), 298 (326—CO or 341—43) and 286 (341—55). These data support the structure of **2** as 1,5,8-trihydroxy-3-methoxy-2[3-methyl-2-but enyl] xanthone [10].

When the mother liquor of **2** was acetylated and examined on TLC, it showed the presence of two compounds at R_f 0.26, and 0.40, respectively on silica gel, benzene—chloroform (1:1) which were separated by prep.

TLC. The first was found to be identical with **2** while the second was characterized as **4** by UV, ^1H NMR and MS data.

Compound **4** showed UV absorption maxima at 310 and 360 nm in chloroform. Its ^1H NMR spectrum showed singlets at δ 1.70 and 1.80 for geminal methyl groups, a singlet at δ 2.48 for acetoxy protons, a doublet ($J=6$ Hz) at δ 3.39 for methylene protons, a singlet at δ 3.98 for methoxy protons and a broad triplet at δ 5.20 for an olefinic proton. The singlet appearing at δ 6.43 integrating for one proton was assigned to H-4 [9]. The aromatic region showed an ABX pattern markedly distinct from xanthones with oxygenation at the 7-position [11] and supports the oxygenation at the 6-position. The doublet ($J=9$ Hz) at δ 7.40 for H-8, doublet ($J=3$ Hz) at δ 7.48 for H-5 and a doublet ($J=9, 3$ Hz) at δ 8.38 for H-7 supports the structure of **4** as 1-hydroxy-6-acetoxy-3-methoxy-2[3-methyl-2-but enyl] xanthone. The doublet at δ 8.38 cannot be assigned to H-8, because *p*-coupling is negligible and H-8 should appear as a doublet. The mass spectrum of **4** showed a molecular ion at m/z 368 (88.7) and a base peak at m/z 313 [M—55]. The diagnostic fragment ions at m/z 353 [34%, M—Me], 325 [80%, M—Ac], 283 [50%, M—15—69—H] and 271 [51%, M—43—55+H] further support the assignment of structure **4** to this compound.

The deacetylation of **4** with ethanol—hydrochloric acid yielded the parent compound **5**. The mass spectrum of **5** showed a molecular ion at m/z 326 (52.5%) and a base peak at m/z 271 [M—55] alongwith the fragment ions at m/z 311 [14%, M—Me] and 241 [10%, M—15—69—H]. The quantity of deacetylated product was not sufficient for ^1H NMR. However, on the basis of spectral data for **4** and MS data for **5** the parent xanthone **5** may be characterized as 1,6-dihydroxy-3-methoxy-2[3-methyl-2-but enyl] xanthone.


EXPERIMENTAL

Mps: uncorr ^1H NMR spectra were recorded at 60 MHz or 80 MHz using TMS as int ref and CDCl_3 or $\text{DMSO}-d_6$ as solvent

Plant material The leaves of *G. mangostana* were collected from the lower slopes of the Nillgiri hills in India and identified by Professor W. Husain (Department of Botany, A.M.U., Aligarh). A Voucher specimen was submitted to the A.M.U. Herbarium, Aligarh (Voucher No Husain-37603).

Isolation Dried leaves (5 kg) were powdered and extracted with EtOH. The EtOH extract was concd and treated with petrol and C_6H_6 . The C_6H_6 extract (2.5 gm) was chromatographed over a silica gel column. The fraction eluted with C_6H_6 gave one major band on TLC (brown in UV light and yellow invisible). On cryst. from C_6H_6 —petrol it gave yellow crystals of gartanin [1] (1 gm) mp 163–165°, R_f 0.38 (silica gel, C_6H_6 — CHCl_3 , 1:1). UV $\lambda_{\text{max}}^{\text{CHCl}_3}$ nm 260, 310, 350, ^1H NMR (80 MHz, $\text{DMSO}-d_6$): δ 1.81, 1.75 (s, s, 3H each = CMe_2), 5.23 (br, 2H, 2 \times = CH), 3.50 (br, 4H, 2 \times CH_2), 6.60 (d, 1H, $J=8.8$ Hz, H-6), 7.24 (d, 1H, $J=8.8$ Hz, H-7), 12.20 (br, 1H, OH), 11.19 (br, 1H, OH), 9.51 (br, 2H, OH). IR $\nu_{\text{max}}^{\text{KBr}}$ cm^{-1} 3200, 1630, 1590, 1490, 1265, 1225, 1180, 1005, 810, 730. MS m/z (rel. int.) 396 (M⁺, 48.5), 381 (M⁺—15, 9.2), 353 (11.9), 341 (47.8), 325 (52.6), 297 (25.8), 285 (100), 284 (35.8), 273 (7.8).

Further elution of the column with C_6H_6 —EtOAc (9:1) gave an oily mass which on repeated cryst. gave crystals of **2** (100 mg), mp 193–195°, R_f 0.25 (silica gel, C_6H_6 — CHCl_3 , 1:1), R_f 0.44 (silica gel,

C_6H_6 -EtOAc 9:1) It gave green colour with $FeCl_3$, appeared yellow in visible light and was characterized as **2** by UV, 1H NMR, IR and MS. UV λ_{max}^{MeOH} nm 220, 250, 280, 310. 1H NMR (DMSO- d_6 , 80 MHz), δ 1.62, 1.72 (s, s, 3H each, =CMe₂), 3.2 (br, 2H, CH₂), 3.92 (s, 3H, OMe), 5.08 (br, 1H, =CH), 6.58 (d, J = 8.8 Hz, 1H, H-6), 6.64 (s, 1H, H-4), 7.24 (d, J = 8.8 Hz, 1H, H-7), 10.91 (br, 1H, 5-OH), 11.02 (br, 1H, 1-OH), 11.03 (br, 1H, 8-OH). MS m/z (rel int) 343 (17.7), 342 (83.3), 327 (61.1), 326 (31.7), 299 (90.4), 287 (100), 286 (16.2), 285 (13.9), 274 (17.3), 271 (50.9).

Compound **2**, on acetylation with Ac_2O -pyridine and repeated cryst from $CHCl_3$ -EtOH afforded the acetate **3** (30 mg), mp 172-175°. UV $\lambda_{max}^{CHCl_3}$ nm 310, 360. 1H NMR (CDCl₃, 60 MHz) δ 1.69, 1.75 (s, s, 3H each, =CMe₂), 2.41 (s, 3H, OAc), 2.45 (s, 3H, OAc), 3.30 (br, 2H, CH₂), 3.93 (s, 3H, OMe), 5.10 (br t, =CH), 6.33 (s, 1H, H-4), 6.97 (d, 1H, J = 8.8 Hz, H-6) and 7.43 (d, 1H, J = 8.8 Hz, H-7); MS m/z (rel int) 426 (9), 384 (30.6), 341 (41.4), 326 (23.4), 298 (32.4), 286 (30.6), 56 (100).

The mother liquor of **2** on acetylation with Ac_2O -pyridine yielded **3** and **4** which were separated on PTLC silica gel, C_6H_6 -CHCl₃ 1:1. Compound **3** was identical with the acetate of **2** while **4** (25 mg), mp 162°, R_f 0.40 (silica gel, C_6H_6 -CHCl₃ 1:1) showed UV $\lambda_{max}^{CHCl_3}$ nm 310, 360, 1H NMR (CDCl₃, 60 MHz) δ 1.70, 1.80 (s, s, 3H each, =CMe₂), 2.48 (s, 3H, OAc), 3.39 (d, J = 6 Hz, CH₂), 3.98 (s, 3H, OMe), 5.20 (br t, =CH), 6.43 (s, 1H, H-4), 7.40 (d, 1H, J = 9 Hz, H-8), 7.48 (d, 1H, J = 3 Hz, H-5), 8.38 (d, 1H, J = 9, 3 Hz, H-7). MS m/z (rel int) 368 (M⁺, 88.7), 353 (34), 325 (80), 313 (100), 283 (50) and 271 (51). The deacetylation of a small quantity (15 mg) of **4** with EtOH-HCl yielded the parent compound **5** (10 mg), mp above 240°, MS m/z (rel int) 326 (M⁺, 52.5), 311 (14), 271 (100) and 241 (10).

Acknowledgements—Professor M S Ahmad (Chairman, Department of Chemistry), Dr B Achari (Indian Institute of Chemical Biology, Calcutta) and Dr F Anwer (Central Drug Research Institute, Lucknow) are gratefully acknowledged for facilities and MS data, respectively.

REFERENCES

- 1 Sami, B P and Rao, P L N (1966) *Indian J Chem* **4**, 27
- 2 Sami, B P and Rao, P L N (1969) *Indian J Chem* **7**, 680
- 3 Rao, P L N and Verma, S. C. L. (1951) *J. Sci. Ind. Res. (India)* **10B**, 184
- 4 Sultanbawa, M U S (1980) *Tetrahedron* **36**, 1465
- 5 Monache, G D, Monache, F D, Waterman, P G, Cricheton, E G and Lima, R A D (1984) *Phytochemistry* **23**, 1757
- 6 Sen, A K, Sarkar, K. K., Majumdar, P C and Banerji, N (1986) *Indian J Chem* **25**, 1157
- 7 Govindachari, T R, Kalyanaraman, S P, Muthukumaraswamy, N and Pai, B R (1971) *Tetrahedron* **27**, 3919
- 8 Perkin, A C (1913) *J. Chem. Soc.* **103**, 657
- 9 Jafferson, A, Quillmann, A J and Scheinman, F (1970) *Aust. J. Chem.* **23**, 2539
- 10 Parveen, M and Khan, N U (1987) *Chem. Ind.* 418
- 11 Carpenter, J, Lockslay, H D and Scheinmann, F (1969) *J. Chem. Soc. (C)*, 486

TWO XANTHONE GLYCOSIDES FROM *GENTIANA LUTEA*

TAKAAKI HAYASHI* and TAKASHI YAMAGISHI

Hokkaido Institute of Public Health, N-19, W-12, Kitaku, Sapporo 060, Japan

(Received 22 February 1988)

Key Word Index—*Gentiana lutea*, Gentianaceae; gentian, xanthone glycoside, 7-hydroxy-3-methoxy-1-*O*-primeverosylxanthone, 1-hydroxy-3-methoxy-7-*O*-primeverosylxanthone

Abstract—Two new xanthone glycosides have been isolated from the root of *Gentiana lutea*. The structures were determined as 7-hydroxy-3-methoxy-1-*O*-primeverosylxanthone and 1-hydroxy-3-methoxy-7-*O*-primeverosylxanthone on the basis of spectroscopic evidence.

INTRODUCTION

The dried root of *Gentiana lutea* (gentian) is one of the most important crude drugs used as bitter stomachic and sedative. It is known to contain bitter glycosides, such as gentiopicrosides [1-3] and amarogenin [4], and xan-

thone glycosides, gentioside [5, 6] and mangiferin [6]. The gentian, used in Japan, is mainly imported from Europe. In past decades, it has been also cultivated in Hokkaido (Japan). The gentian imported from Europe has a yellowish brown internal colour, but that produced in Hokkaido has a white internal colour. It is considered